In the sale you will find especially cheap items or current promotions.
Want to part with books, CDs, movies or games? Sell everything on momox.com
Dualität ist ein Thema, das in der modernen Mathematik fast überall anzutreffen ist. Das vorliegende Werk dokumentiert Ergebnisse eines Forschungsprojektes, in dem es darum ging, die Entstehung von Dualität aus historischer und fachlicher Sicht nachzuzeichnen, um so ihre aktuelle Bedeutung besser zu verstehen. Diese Entwicklung beginnt schon in der Antike mit der Betrachtung dualer Platonischer Körper im apokryphen XV. Buch von Euklids "Elementen". Die Polyedertheorie ist ein Gebiet, indem immer wieder die Dualität diskutiert wurde: Lassen sich neu betrachtete Klassen von Polyedern dualisieren? Wie sind Definitionen abzuändern, dass Dualisieren doch möglich wird? Hieraus ergaben sich ganz neue Sichtweisen auf Polyeder selbst, weshalb man die Dualität als eine treibende Kraft in der Geschichte der Polyeder ansehen kann. Weit zurück liegen auch die Wurzeln der Dualität im Bereich der sphärischen Geometrie vor allem in Gestalt des Polardreiecks. Die sphärische Geometrie wurde auch herangezogen, um die anfänglich rätselhafte Dualität der im 19. Jh. neu entstehenden projektiven Geometrie zu verstehen. Ausführlich wird die berühmte Kontroverse von J. D. Gergonne und J. V. Poncelet behandelt und der für die weitere Geschichte wichtige Gegensatz von abstrakt-struktureller Sicht und konkret-konstruktivem Ansatz. Antworten, die die meisten mit Dualität verknüpften Fragen zufriedenstellend klärten, lieferte dann die auf Möbius und Plücker zurückgehende analytische Richtung, für die die Dualität in der Möglichkeit wurzelt, Formeln auf zweierlei Arten zu lesen. Große Bedeutung gewann die Dualität im 19. Jh. insbesondere bei der Untersuchung von Kurven und Flächen. Nachdem ausführlich die Entwicklungen des 19. Jhs. in den Gebieten Polyedertheorie, sphärische und projektive Geometrie behandelt wurden, geht das fünfte Kapitel des Buches auf einige Themen aus der ersten Hälfte des 20. Jh. ein wie Axiomatik, lineare Algebra und Verbandstheorie. Ein Kapitel über graphische Statik, ein Gebiet, in dem die Dualität überraschende Anwendungen fand, beschließt die Diskussion.
Zahlreiche Abbildungen und konkrete Beispiele ergänzen die theoretischen Ausführungen dieses in seinem Umfang und in seiner Intention einmaligen Buches.